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ABSTRACT

A two-dimensional discrete spatial filter was developed. It serves as a means to classify meteorological
fields on a limited-area grid according to their spatial dimensions by filtering certain wavenumber ranges.
Thereby it performs an isotropic spatial-scale separation of the atmospheric fields. A general algorithm was
developed, which allows the construction of a filter that closely approximates a specific isotropic response
function. The filter is simple in the construction and easy to apply while giving reasonable results. The
method allows for considerable flexibility in choosing this specific response. This way, low-, band-, and
high-pass filters are obtained. Examples show an effective scale separation of atmospheric fields on limited-
area grids that can be used for process studies, model evaluation, or comparisons.

1. Introduction

Limited-area models (LAMs) for the atmosphere are
used for simulating the regional climate (Giorgi et al.
2001). The spatial gridding of these regional climate
models (RCMs) currently ranges from about 50 to 10
km, and time periods of up to several decades have
been simulated. However, the question if RCMs pro-
vide added value compared to global analyses [such as
the National Centers for Environmental Prediction
(NCEP)-National Center for Atmospheric Research
(NCAR) reanalysis; Kalnay et al. 1996] or global mod-
els of lower resolution is still only partly answered. We
believe this is mainly due to the lack of a convenient
tool to properly describe the added value—namely, a
filter procedure that compares the performance of the
global analysis or model with that of the regional model
on large and medium-to-small spatial scales. In this pa-
per, we suggest using digital filters for the separation of
components of a limited spatial field with different spa-
tial scales. The spatially filtered fields may then be used
for model validation, diagnostic purposes, or compari-
sons between the global coarse-grid data and the re-
gional model refinement.

When identifying the added value of RCM simula-
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tions, we suggest the application of the downscaling
paradigm that states that smaller-scale dynamics may
be understood as being conditioned by large-scale vari-
ability and physiographic regional detail (von Storch
1995). In doing so, we consider the large scales de-
scribed properly by the global analyses or global cli-
mate models. On the other hand, the global models and
analyses have little skill at scales smaller than a few grid
points, for example, a few hundred kilometers. On
these scales, we expect the added value of RCMs. In the
present paper, we deal with the problem of how to
achieve conveniently and efficiently this scale separa-
tion.

Spatial filters are rarely used for the evaluation of
RCM output, in particular not in the context of regional
climate simulations with an RCM. One approach, used
in LAM forecasting and evaluation, is to expand a lim-
ited field in a 2D Fourier series, and to rebuild a filtered
field by recombining only Fourier components with rel-
evant scales (Errico 1985; Stamus et al. 1992). This Fou-
rier concept was also incorporated into the spectral
nudging or large-scale forcing concept by Waldron et
al. (1996), von Storch et al. (2000), and Miguez-Macho
et al. (2004), which keeps the large-scale part of a re-
gional model solution close to the forcing global field in
the model interior. Bettge and Baumhefner (1980) in-
troduced digital filters using classical ideas proposed by
Shuman (1957) and Shapiro (1970).

In the present paper, we provide an algorithm to
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F1G. 1. Fourier decomposition of (a) a spatial trend and (b) a low- and high-pass Fourier-filtered spatial trend. The x axis denotes
the grid points of the LAM.

construct two-dimensional digital filters for the spatial-
scale separation of limited-area fields (sections 5 and
6). Examples of such filters are presented and their
utility is demonstrated (section 7). Before doing so, we
want to discuss alternatives to our approach.

The most straightforward approach is Errico’s ap-
proach to decompose the two-dimensional field into a
series of sinusoidal harmonics in x and y directions, as
mentioned above. This approach has the distinctive ad-
vantage that the scale separation is very accurate. How-
ever, the harmonic analysis suffers from the erroneous
description of spatial “trends” (nonsinusoidal compo-
nents of the spatial fields, such as linear or higher poly-
nomials) as being composed of “waves.” The harmonic
analysis works fine if the considered field is periodic.
However, LAM output is almost never periodic and
often exhibits a trend; for instance, in winter, air pres-
sure is often lower over the ocean and higher over land.
We demonstrate the problem of subjecting a “trend” to
harmonic analysis by a synthetic example of a pure spa-
tial trend without any wave components (Fig. 1a). This
linear trend (shown as dots) can be decomposed into
sine and cosine waves as shown in Fig. 1a. If this spatial
trend is filtered with a Fourier low-pass filter (lowest
four wave contributions of Fig. 1a were retained in this
example), the resulting curve (dashed curve in Fig. 1b)
replicates the overall trend but adds significant large-
scale wave components—in particular at the margins.
One might argue that in LAM applications the over-
shooting in the marginal zone would not matter, since it
would affect only the sponge zone, which is normally
not considered. However, there is also a false identifi-
cation of short-wave contributions by the high-pass spa-
tial filter (solid curve in Fig. 1b; shortest four wave
contributions of Fig. la were retained), which is not
limited to the sponge zone but which occurs also in the

interior. The discrete cosine-filter method suggested by
Denis et al. (2002) is better in describing spatial trends,
but it also maps all variability on wavy components, so
that any recombination of a subset of these compo-
nents, which is needed for formulating a filter, may
generate artificial wavy contributions.

Errico (1985) had noticed the problem of spatial
trends and has suggested subtracting linear functions; in
the following we extend his approach by considering
not only linear but also quadratic polynomials (sec-
tion 2).

Digital filters (e.g., Shuman 1957; Shapiro 1970,
1975) have the advantage that they operate with a finite
“support base”; for example, the filtered value at some
location is a function of the values in a neighborhood of
that location and not, as in case of harmonic analysis, of
all locations. The disadvantage is that the scale separa-
tion is less effective than with a Fourier filter, since the
response function of a digital filter is smooth and not a
step function as in the case of a Fourier filter. That is,
for a low-pass filter, the long waves will not exactly be
retained but only approximately; similarly, a high-pass
filter will not completely remove all contributions of
long waves—which is a problem, when the intensity of
short waves is much smaller than those of long waves.
Digital filters usually lead to a loss of data at the mar-
gins of the domain, as the determination of a filtered
value needs data in a symmetric neighborhood of that
point. However, with RCMs this is not a problem, as
such models are run with a sponge zone within which
little added value is expected. Thus, if the filtering
neighborhood is not wider than the sponge zone, a scale
separation for the entire relevant interior domain can
be achieved.

Usually, digital filters are one-dimensional, and are
applied to two-dimensional fields by first applying it in
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one direction and then in the other. Bettge and Baum-
hefner (1980) used such a one-dimensional digital
bandpass filter for obtaining a scale separation of lim-
ited-area atmospheric fields. They applied the 1-2-1
low-pass-filter operator presented by Shuman (1957)
and created bandpass filters by repetition and differ-
ences. Another one-dimensional digital filter, namely a
high-order, high-pass implicit filter, was used by Ray-
mond (1989). Such filters are, unfortunately, not isotro-
pic and their filter characteristics are not really flexible.
Therefore a method for the flexible construction of a
two-dimensional isotropic discrete filter was required.
The filter weights are obtained by solving an approxi-
mation problem.

Two-dimensional wavelets (e.g., Yano et al. 2001;
Desrochers and Yee 1999; Jameson et al. 2002) may be
a promising, alternative approach. However, so far
their application in scale separation used in regional
climate modeling is very limited. For our limited-area
model application with terabytes of data a fast filtering
approach is essential. In general the image decomposi-
tion in fast wavelet algorithms is made with a dyadic
resolution factor (Daubechies 1992; Starck et al. 1998).
If, as in our case, special wavenumbers are of interest as
cutoff frequencies they usually are not matched directly
by the dyadic resolution approach. To achieve the sepa-
ration into certain wavenumber bands a postprocessing
of the wavelet with the multiresolution analysis (Mallat
1989, 1998) is necessary, which costs extra computing
time, both in terms of determining the wavelet trans-
form and the back transformation. We suggest that
wavelets are not a viable alternative to our digital fil-
ters, which are computationally simple and adapted to
the specific wavenumber band.

2. Preprocessing: Subtraction of two-dimensional
polynomials

Before filtering, the meteorological fields in our
study were “preprocessed,” whereby two-dimensional
polynomials were subtracted. This serves two purposes:

e Fourier expansions of fields on regionally limited
grids suffer from the fact that the nonperiodic com-
ponents are falsely represented by “waves.” By iden-
tifying the dominant nonperiodic components P, we
may conceptually express the 2D LAM fields as

f(x»)’) = Pf(x»Y) + Lf(xvy) + Mf(xay) + Sf(xvy)
(1)

Here, P]’f represents the polynomial of kth order of
the two-dimensional field f, L, its large-scale wave
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component, M, the medium-scale wave component,
and S, the short-scale wave component of f.

When the P, component is disregarded, the non-
periodic contribution falsely compounds the wavy
components on all scales. Thus, the inclusion of Pf
leads to a better separation and description of com-
ponents.

¢ Practically, the separation into the three wave com-
ponents L, M, and S is obtained by a digital filter.
Such filters operate fine if the variance of the wave-
numbers to be suppressed is not much larger than the
variance that is supposed to be retained. This is al-
ways the case with low-pass filters, when high wave-
number variance is eliminated—high wavenumbers
always have smaller variance than low wavenumbers.
There is also not usually a problem for medium-pass
filters. However, high-pass filters are usually nega-
tively impacted, as the elimination of low-pass com-
ponents is not perfect and minor remnants of low-
wavenumber variability remain—and minor rem-
nants are comparable to high-wavenumber
contributions in terms of variance. An example for
this is given in Errico (1987). The subtraction of poly-
nomials can help to ease this problem, as this opera-
tion reduces the variance of the large scale.

Equations for the polynomial subtraction are given in
appendix A. Figure 2 shows the K = 1 and K = 2
polynomials fitted to the wind speed on 3 December
1999, 6 p.m., and the total wind speed field as well as
after subtraction of the K = 1, 2 polynomials. In con-
trast to the linear K = 1 polynomial, the fitted quadratic
polynomial exhibits a marked nonlinear pattern, de-
scribing higher wind speeds over the North Atlantic
and a gradual increase toward southern latitudes and
continental areas. The wind speed field in the bottom of
Fig. 2 is rather noisy. Thus the subtraction of the poly-
nomials is not changing the overall character of the
spatial wind speed distribution, but the NW-SE asym-
metry is eliminated. We suggest subtracting the qua-
dratic polynomials for data to be band- or high-pass
filtered. The polynomial subtraction was applied to all
band- and high-pass-filtered fields shown in section 7.

3. Selection of prespecified wavenumbers

The idea was to construct an almost isotropic filter.
Thus, it is meaningful to select all wavenumbers with
the same or similar two-dimensional wavenumber k* =
\V/k? + P and to assign the same response k(k*).

A low-pass filter is generated by requesting x(k*) =
1 for all k* below a small wavenumber—for instance,
S5—and k(k*) = 0 for all wavenumbers k* larger than a
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FIG. 2. (top) K = 1, 2 polynomials P}, and P? fitted to the wind speed field (ms™") at a height of 10 m at 1800 UTC 3 Dec 1999 (storm
Anatol). (bottom) Full wind speed field for the same date, and after subtraction of the K = 1, 2 polynomials, i.e., u — PL and u — P>

large number—say 20. In the intermediate range, the
response is expected to smoothly transform from 1 to 0.
It is advisable that the two regions with specified re-
sponses are not covering the entire domain; instead a
band of unspecified responses should be used in an
in-between region.

Similarly, high-pass and bandpass filters can be con-
structed. For a bandpass filter three parameters have to
be selected, a region with zero responses for small and
large wavenumbers, and a response of one for medium
wavenumbers.

4. Filter weights

The filter array must be quadratic and symmetrical
with respect to the zonal and meridional directions, and
also with respect to both diagonals. Thus, only a few
filter weights are to be determined, in the sketch
marked by “x,” while those determined by symmetry

are given by “o,” for instance in a filter with 9 and with
25 weights:

0000O0
00O 0000O
0XO0 0O0XO0O0,
0 X X 0O0XXO
00X XX

Apart from the central point, which is weighted by the
central filter weight a, ,, N points to the left (top) and N
points to the right (bottom) are used, such that 2N + 1
points are considered in either direction. For a LAM
domain of 81 X 91 grid points we chose filters with N =
8 points, so that their spatial extension is (2N + 1) X
(2N + 1) = 17 X 17 points.

The symmetric conditions are a,,,,, = a_,, , = @, —,, =
a_,,_, = a,,,, whereby subscripts n and m denote rows
and columns, respectively. Thus, the filter weights a,, ,,
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FiG. 3. Filter weights for a (a) low-pass, (b) bandpass, and (c) high-pass filter. Here ay, is in the center; representation as in Eq. (2).
The axes denote grid points of the LAM. Filters were chosen with N = 8 points, so that their spatial extension is (2N + 1) X (2N +

1) = 17 X 17 points.

look like the following in the case of a filter with 25
weights:

a2 A 21 .20 A_27 a_2>
a_q,-2 a1 a_10 d_171 ad_1p
do,—2 Ao, —1 aoo do (%) =
ay,—2 ay,— aio aya ayp
ay o a azo az azs
o Apq Qpog Ay Qpp
a1 11 Q1o dyp1 Gp3
Ao Q19 Qoo A1 Gap . 2)
a1 11 Q1o Gy O3
dyp dpq dyo dpp dpp

The resulting filter weights for a low-, band-, and high-
pass filter are shown in Fig. 3. The low-pass-filter
weights (Fig. 3a) show a homogenous structure with
highest values in the middle of the weighting area and
decreasing values farther away from the filter base
point. This will result in a large mean value and there-
fore a low-pass-filtered field. The bandpass-filter
weights (Fig. 3b) include several transitions between
positive and negative values, and thereby the mean
value will be filtered and only the smaller structures will
remain. This is even more strongly enforced for the
high-pass-filter weights (Fig. 3c), which comprise a yet
higher number of changes in sign. Thus, only the small-
est structures will pass this filter.

5. Response function

We assume a 2D periodical function f that can be
expanded into Fourier components:

K
fry) = 2 age 3)
kl=—K

with the Fourier coefficients oy, = o*, _, because f(x,
y) is a real function; k and / are the zonal and meridi-
onal wavenumbers, respectively. The arguments x and
y vary between 0 and 2. The filtered function f is
given by

f,y) = agofx,y) + A+ B+ C @)
with
N
A= a,[f(r,y +A)+ flx,y = A) + flx + A, y)
n=1
+ fx — A, )],

N
B= a,,[f(xc+h,y+i)+flx+A,y—h)

1

+ flx — A,y +A) + flx — A,y — )],

n=2m

n

—1
Ayl flx + A,y +m) + flx+ A,y —m)
=1

+ f(x — A,y +m) + f(x — A,y —m)
+ f(x +m,y +A)+ f(x +m,y—n)
+ flx —m,y +A) + flx —m,y — A)], (5)

with the convention /i = n-2w/L and i1 = m - 27/L.
Here, L is the number of grid points, which are counted
by the integers n and m. The transformation from n to
A is required, as we have written (3) for functions de-
fined on the interval [0, 27]. The filter weights are de-
noted by a,,,, and A represents the central row and
column of matrix (2), B the diagonals, and C the re-
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F1G. 4. Response functions for the (a) low-pass, (b) bandpass, and (c) high-pass filters with the filter weights of Fig. 3. The axes
show the zonal wavenumbers k (x axis) and the meridional wavenumbers / (y axis).

maining elements. Further detailed calculation steps
are given in appendix B.

The filtered function may also be expanded into a
Fourier decomposition

K
f(x»)’): 2 &k,zei(kXHy)

kl=—L

(6)

with &, , = a*,, = & _, = &_, ;. The response func-
tion is given by

(7)

By concatenating the various contributions in (4), the
response function k can be written as in the following
for wavenumbers k, /= —K,—-K+1...-1,0,1... K
-1, K:

k(k,l) = Qe 1/ -

N
k(k, 1) = ayo + D, {2a, J[cos(kit) + cos(li)]
n=1

+ 4a,, ,cos(kA)cos(If)}

N

+4 >, > a,,[cos(ki)cos(lim)

n=2m=1

n—1

+ cos(lf)cos(km)].

®)

The constants 2 and 4 in (8) account for the multiple
uses of the filter weights in one filtering step. The re-
sponse functions are shown in Fig. 4 for the (a) low-
pass, (b) bandpass, and (c) high-pass filters with the
filter weights of Fig. 3. The wavenumber ranges were
chosen as in the following for the low-pass filter:

k(k*) =1 forall k*=6 and

k(k*) =0 forall k*=11;

for the bandpass filter:

k(k*)=0 forall k*=6,
k(k*) =1 forall k*=8 and =16, and
k(k*) =0 forall k*=18;

and for the high-pass filter:

k(k*) =0 for all
k(k*) =1 for all

k* =21
k* =26

and

for a filter of 17 X 17 grid points used for an LAM
domain of 81 X 91 grid points. The response functions
show a well-defined wavenumber range where the re-
sponse is close to 1 and a smooth transition to response
values of about 0. The transition area can be selected
quite narrowly as can be seen for the bandpass filter
(b), which results in a rather sharply defined filter.

Some cases of overshooting of the response function
occurred when the areas of response values of 1 and 0
were chosen in a way that the transition area in be-
tween was too narrow, so that only a small number of
unspecified responses resulted. Overshooting can be
identified by locating large positive or negative values
in the response function that are far beyond the values
of 0 or 1. In that case the response function showed very
irregular patterns compared to the smooth patterns
shown in Fig. 4. To prevent overshooting it is advisable
that the regions with specified responses are not cov-
ering the entire domain and that they are well sepa-
rated so that there is enough space for unspecified re-
sponses.
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6. Optimal discrete filters

Equation (8) is linear in the coefficients ag, a, o, a5,
Ay, ... ay. If the filter has the width 2N + 1, then (N
+ 1) - (N + 2)/2 coefficients need to be determined.
This can be done by specifying responses k(k, [) at a
variety of wavenumbers, so that a set of linear equa-
tions is obtained:

k(k, I) = ago + 2a; o[cos(k1) + cos(/1)]

+ 4a, cos(kf) cos(lf)

N
+4 > {2a,, [cos(kn) + cos(lA)]
n=1

n—1

+ E a,, A cos(kn) cos(lrir) + cos(li) cos(kit)]
m=1

+ 4a,,,, cos(kn) cos(in)}. 9)

When we introduce the notation A; = ay o, A, = a;, A;
= a,4, and

n=2 and m=0...n

(10)

An~(n+ D2+1+m = an,m fOI'

and
Mg, =1
My pn1y2+1 = 2[cos(kii) + cos(iR)] forn =1
My pnr1y2414+m = 4 cos(kit) cos(lr)
+ cos(lf) cos(k)]
and n=2

for m=1...n—-1

My nv1y2+1+4n = 4 cos(kii) cos(ln) for n=1.

(11)
Equation (9) may be rewritten with K = (k, [):
(N+1)-(N+2)/2
KK)= D MgA, (12)

j=1

One option is to select as many wavenumbers with
specified responses as the number of weights (N +
1) - (N + 2)/2. In that case, a linear set of equations with
an invertible matrix emerges. We have tried this out,
but unsatisfactory results emerged—the solution for the
two-dimensional response function k is a superposition
of waves, and fixing k at a number of selected wave-
numbers creates a two-dimensional k that fits exactly
the specified responses at a few locations, but between
these locations unacceptable overshooting phenomena
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emerged, in particular when band- and high-pass filters
were constructed.

Therefore, the response is specified at more wave-
numbers than there are filter weights. Then, the set of
linear equations is overdetermined. An approximate
solution is obtained by minimizing

(13)

(N+1)(N+2)2
E<K<K) - > MKA)Z-

K j=1
The filter weights solution for this problem is given by

A= MM Mk (14)
with the matrix M with (N + 1) - (N + 2)/2 columns
(dimension of A) and as many rows as wavenumbers
have been selected with given responses (dimension of
k). Please note that the sum of the filtered plus the
polynomial pieces does not equal the total. The indi-
vidual filtered pieces are not orthogonal to each other.
That is, the variances of the different contributions do
not add exactly to the total variance. This would be a
nice property to have, but for the specific purpose in
mind, namely the characterization of phenomena on
different scales, this is not really needed.

7. Applications

The results of a regional model run (Feser et al. 2001)
for western Europe forced with the NCEP reanalyses
(Kalnay et al. 1996) were filtered with the presented
filter for three wavenumber ranges. The quadratic poly-
nomials (section 2) were subtracted before applying the
band- and high-pass filters. A first example for the
storm “Anatol” can be seen in Fig. 5. It shows the (a)
unfiltered, (b) low-pass-, (c) bandpass-, and (d) high-
pass-filtered wind speed fields at a height of 10 m for
1800 UTC 3 December 1999 for western Europe when
the storm was centered over the northeastern tip of
Denmark with a low pressure core of 956 hPa. The
low-pass-filtered field (b) shows the smoothed field and
displays only the very large scales. The bandpass-
filtered data (c) lack the large-scale information and
show land-sea interactions on the regional scale but
also regional wind speed structures over the North Sea
connected with the intense low pressure system. The
high-pass-filtered part (d) displays the smallest scales
with largest values almost exclusively in the coastal
zones for this wind speed example. An effective scale
separation was achieved.

The bandpass- and high-pass-filtered fields show
anomalies from the large-scale field; therefore the val-
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FiG. 5. The 10-m wind speed fields (m s !) for the storm Anatol at 1800 UTC 3 Dec 1999 of a LAM simulation:
(a) unfiltered, (b) low-pass-filtered, (c) bandpass-filtered, and (d) high-pass-filtered data. For (c) and (d) the
positive anomalies are also shown as contour lines so that they can be distinguished from the negative anomalies.
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F1G. 6. Precipitation fields (mm) for the storm Anatol accumulated for 1800 UTC 3 Dec 1999 of a LAM
simulation: (a) unfiltered, (b) low-pass-filtered, (c) bandpass-filtered, and (d) high-pass-filtered data. For (c) and
(d) the positive anomalies are also shown as contour lines so that they can be distinguished from the negative
anomalies.
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FIG. 7. Mean sea level pressure (hPa) for the storm Anatol at 1800 UTC 3 Dec 1999 of a LAM simulation: (a)
unfiltered, (b) low-pass-filtered, (c) bandpass-filtered, and (d) high-pass-filtered data. For (c) and (d) the positive
anomalies are also shown as contour lines so that they can be distinguished from the negative anomalies. Note that

the low-pass-filtered field is reduced in the overall level, which reflects the fact that the filter only approximately
conserves the spatial mean.
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ues are positive and negative around the zero point.
The white “frames” around the filtered fields are a re-
sult of the digital filter’s weighted average operation
around a base point, which cannot be calculated in the
direct vicinity of the LAM’s boundaries due to a lack of
grid points. Therefore the points close to the lateral
boundaries (in our example eight rows and columns of
grid points, which is equal to the sponge zone width of
the LAM we used) have a value of zero.

Another example of the filter application is given in
Fig. 6. It shows precipitation fields for the storm Ana-
tol, accumulated for 3 December 1999. Again, the (a)
unfiltered, (b) low-pass-, (c) bandpass-, and (d) high-
pass-filtered fields are shown. The low-pass- and the
bandpass-filtered data display the frontal precipitation
related to the intense low pressure system on their re-
spective scale. Also the high-pass-filtered precipitation
is most intense in the vicinity of the storm’s cloud sys-
tems.

Figure 7 shows the mean sea level pressure field for
the storm Anatol. The storm center over the northeast-
ern tip of Denmark can be seen both in the unfiltered
and low-pass-filtered fields [(a) and (b)]. The bandpass-
filtered data (c) depict anomalies around the low pres-
sure core and over the North Atlantic. For calculating
the high-pass-filtered field (d) not only were the poly-
nomials subtracted, but also the low-pass-filtered field
(whereby the polynomials were subtracted as well).
This was necessary because the spectrum of the mean
sea level field drops off rather sharply so that the rem-
nants of large-scale features in the high-pass-filtered
field S, are comparable to the small-scale features.
Therefore, the large-scale contribution is suppressed
explicitly before high-pass filtering by calculating f —
PJ{( — Ly pr. Then, this reduced field is filtered. Because
of the double-filter application, the spatial extension of
the data is decreased; now there are 16 instead of 8 rows
and columns of zero value around the filtered data. The
largest anomalies can be seen north of the low pressure
core and over the North Sea.

Since the main purpose of this paper is to present the
method of spatial two-dimensional discrete filtering
and not the application of it we will not go into further
detail here. For further studies the filter may be used as
a tool to compare such fields for model evaluation, for
process studies on different spatial scales, or to show
the resolvable scales of the LAM.

8. Summary and conclusions

In this paper we have presented a method to con-
struct isotropic digital filters suited for scale separations
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of atmospheric fields on limited-area grids. There are
several methods to do scale separations; like Fourier
filtering, the discrete cosine transform, or digital filters.
We suggest using near-isotropic two-dimensional digi-
tal filters because these filters operate with a finite ba-
sis, can be constructed flexibly, and are easily imple-
mented and run with little computation cost. Our
method allows the construction of filters for a broad
range of applications and for data on homogeneous,
limited-area grids. A wavenumber range of interest has
to be selected and the best-fitting response values can
then be calculated automatically using an approxima-
tion method. The filter weights are then calculated by a
matrix inversion.

In our example, we constructed several isotropic dis-
crete filters for differing wavenumber ranges, to isolate
the large, medium, and small scales of limited-area at-
mospheric fields. Applications of the filters produced
reasonable results.

As a next step we will apply these filters for model
evaluation purposes, to study processes on a limited-
area domain or to advance with the question of added
value of regional models.
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APPENDIX A

Polynomial Fit

a. Formal presentation of problem

We want to expand a discrete set of numbers x;; on a
rectangular grid of points (i, j) withi=1...n andj =
1...n, into a polynomial of order K, that is,

r+qg=K

— -
xi,j - E ar,ql] + 8[,]’7
r,q=0

(A1)

where a values are the polynomial coefficients that are
to be determined, and r and g are the indices that num-
ber serially the polynomial terms. Here, & represents a
remainder, and the square of sums X, ; e,—z’j is assumed to
be minimum. The sum is made up of (K + 1) (K + 2)/2
terms.
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This expression (A1) means for

K=0: Xij = oo t &
K=1: =agg T ajoi +ag,j+ &
K=2: =agy T a i t+ az,oiz +ag,j + ao,zj2
taljt e
etc.

The expansion (A1) may be rewritten as

K
xy= 2 Tt oy (A2)
k=0
with
K—k
= ) a0 (A3)
q=0

For example:

K=1. Ty=ay,+ ay,j
Tl = al’oi
K=2 T,= ago + ag,j + a(),2f2

T, =a g +a,jj
_ 2
T, = ayi°.

For a given field x,;,
coefficients a, , so that

é—E[ ETk] = min.

Ly

we want to determine optimal

(A4)

b. Solution of minimum problem

The minimum of (A4) is derived by first calculating
derivatives with respect to the quantity to be deter-
mined, and then finding zeros of these derivatives, that is,

A3

n=1 |:k,l—K

S

=1

3

~

k.

3]

=—K n=1

>

n=1 kl=—K

n=1 I=—K

kl=—K n=1
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=0. (AS)

It is (02T/9a, ) = (9T,/9a,,) = i'j, and thus

|: a (-xi,j - E Tk)2:|
r.q k=0

s aT.
3o Sl )]

rq

=2> 2 T =2 >, x, i
ij k=( ij

or for all pairs (7, g):

> Z 2P = DT (A6

Setting this derivative to zero results in a set of linear
equations for all (K + 1) (K + 2)/2 coefficients a, .
Thus, the problem is reduced to a conventional matrix
inversion problem. A minor technical challenge is to
properly map the two-dimensional index (r, s) on a
one-dimensional index.

APPENDIX B
Response Function of 2D Digital Filter
To determine the response function k of the filter, (3)

is inserted in (4). Because of ¢* + ¢~ ™ = 2cos(x), the
terms A, B, and C can be rewritten as

K
E oy ez(kx+ly( kA + e—zkn 4 eilﬁ + e—ilﬁ):|

N
2D a, (,{ E a € © W cos(kit) + cos(zn)]}
K N
> {2 > a, cos(kit) + cos(lﬁ)]}ozk’,ei(k)(*ly),
t(kx+ly)( iki+ila + e—ikﬁ—ilﬁ + eikﬁ—ilﬁ + e—ikﬁ+ilﬁ):|
N
> a, m{ D T cos(li) + e cos(ln)]}

k,

K N
E [4Ea cos(kn) cos(ln)]a o),
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and

n—1 K

kl=—K

+ eikrh*ilﬁ + e*ikn“'ﬂrilﬁ + e*ikn’l*ilﬁ]

n=2m=1 kil=—K

K N n—1
-3 {42

ki=—K n=2 m=1
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